arXiv:2308.07747v1 [physics.flu-dyn] 15 Aug 2023
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When objects are forced to flow through constrictions their transport can be frustrated temporar-
ily or permanently due to the formation of arches in the region of the bottleneck. While such systems
have been intensively studied in the case of solid particles in a gas phase being forced by gravita-
tional forces, the case of solid particles suspended in a liquid phase, forced by the liquid itself, has
received much less attention. In this case, the influence of the liquid flow on the transport efficiency
is not well understood yet, leading to several apparently trivial, but yet unanswered questions, e.g.,
would an increase of the liquid flow improve the transport of particles or worsen it? Although some
experimental data is already available, it lacks enough detail to give a complete answer to such
a question. Numerical models would be needed to scrutinize the system deeper. In this paper,
we study this system making use of an advanced discrete particle solver (MercuryDPM) and an
approximated numerical model for the liquid drag and compare the results with experimental data.

I. INTRODUCTION

Many-body systems flowing through constrictions, like
sand in an hourglass, might flow continuously, but they
might also tick [1], i.e., flow intermittently, or even get
permanently clogged. The case of an hourglass is quite
paradigmatic since time immemorial and it has been
studied more intensively in the last decades. We know
that, if the bottleneck is wide enough for particles to
flow continuously, the particle transport rate depends on
the relative size of the particle to the bottleneck with a
power N — 1/2 (where N = 2, 3 is the dimensionality
of the system)[2]. However, this continuous flow is com-
promised when the size of the particles falls in the same
order of magnitude of the bottleneck size.

Most constricted flows display qualitatively similar be-
haviour regardless of their nature (grains, suspensions,
pedestrians or animals). For example, when the flow of
bodies becomes intermittent, the probability distribution
of time lapses between the passages of consecutive bodies
present remarkable power-law tails in all cases, with an
exponent that depends on the flow regime [3].

The statistical framework sketched above holds as long
as the passing bodies remain as individual entities. This
condition does not hold, for example, for particles of col-
loidal size, which typically feel a strong attraction to-
wards solid boundaries and to other particles due to van
der Waals forces. Consequently, when colloidal particle
suspensions are forced through constrictions, they tend
to form aggregates either by successive deposition at the
constriction’s walls, growing up to sizes capable of block-
ing the flow [4], or even forming aggregates further up-
stream, large enough to sieve the constriction. The clog-
ging mechanisms for such suspensions have been covered
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often in the literature and they strongly depend on the
physical-chemistry of the system, which determine the
strength of the particle-particle attraction [5-9].

On the contrary, non-cohesive suspensions typically
clog constrictions purely by mechanical forces much like
its dry counterparts. In previous studies [10-12], we
showed that non-cohesive suspensions follow the same
statistical framework as granular materials [3], and there-
fore concluded that the clogging mechanisms must be
identical. Interestingly, this analogy seems to hold re-
gardless of the driving method, either by gravity [13], by
pressure [12], by pumps [11] and even for self-propelled
suspensions [14]. While silos are mostly driven simply by
gravity (i.e., a body force that acts uniformly on all par-
ticles), suspensions can be driven by the drag produced
by the liquid flow, which adds an additional control pa-
rameter into the system that could be potentially used
to optimize the transport of material through the bottle-
neck. Unfortunately, that is not a trivial matter. Indeed,
an increase in pressure (or in liquid volume rate) may
have a detrimental (or little) effect on the transport of
material through the bottleneck [12].

Recent experiments have revealed the crucial role of
the interstitial liquid flow in the clogging of non-cohesive
suspensions [12], but several important details remains
elusive. Numerical simulations could make a significant
contribution to answer these questions.

For decades now, numerical discrete particle methods
are able to solve the dynamics of particles exerted by
forces and torques of different nature (gravitational, elec-
tromagnetic, etc.), as well as the mutual interactions
among the particles. Some are even capable of includ-
ing contact forces of different nature (adhesive, elastic,
plastic and/or viscous).

To solve numerically the interaction between particles
and fluids, two approaches are typically employed: (1) a
direct computation of the liquid flowing through the pore
space, which accurately resolves the viscous drag or (2)
modeling the viscous drag (drag closure) based on the
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space-averaged flow around each particle. These are re-
spectively known as (1) resolved and (2) unresolved meth-
ods. Resolved methods are typically preferable when the
question to answer demands accuracy and precision, but
the method requires fine computational meshes to resolve
the flow accurately. Consequently, computation times are
high, and they are typically limited to small-sized sys-
tems. A good example of resolved methods are lattice-
Boltzmann simulations [15, 16], in which both solid and
fluid phase are solved through a discretized version of
the Boltzmann equation. Unresolved methods are more
convenient when averaging the flow field yields a good
approximation of the final solution. For example, in
CFD-DPM (computational fluid dynamics - discrete par-
ticle method), locally averaged equations for flow (CFD)
and Newton’s equations of motion for the discrete parti-
cle system (DPM) are solved first independently. Then,
fluid-particle interactions need to be defined through a
drag closure model. This approach allows for computa-
tions with millions of particles in average-sized computer
clusters and has been successfully used in systems as flu-
idized beds [17, 18], granular batch sedimentation [19],
particle beds [20] and solid-fluid mixing [21].

One of the main features that makes clogging of sus-
pensions complex (but also interesting) is its stochastic
nature, both for the clog formation as for the clog de-
struction. Consequently, long simulations are required
to gain enough statistics and a fully resolved method
would require a substantially high computational cost.
Therefore, in this work we make use of an unresolved
method: we numerically integrate the dynamics of a non-
cohesive suspension flowing through a bottleneck with
the discrete particle solver MercuryDPM, and approxi-
mate the fluid-particle interaction using well-known drag
closure relations. The analogous experimental system
presents high particle monodispersity and homogeneity,
and therefore seems ideal for a comparison with such a
numerical model. The comparison between numerics and
experiments is made by computing the statistical dis-
tributions of burst durations and clogging/arrest times
for both numerics and previously published experimen-
tal data [11, 12].

The paper is organized as follows: In section II we de-
scribe the numerical method employed and in section III,
we present the results obtained with it. Here we perform
a direct comparison of the numerical and experimental
results. We finalize the paper with a final conclusion,
including a perspective on future research in section IV.

II. NUMERICAL METHODS

Simulations are performed using the open source
code MercuryDPM, created to perform Discrete Parti-
cle Method (DPM) simulations [22]. In this case, the
code is applied to simulate the motion of particles inside
a micro-channel. A Poiseuille flow profile is imposed in
the channel and causes a drag onto the particles, push-

ing them towards the constriction. This drag is corrected
based on the particle packing fraction following the ap-
proach proposed by van der Hoef et al. [16]. Mercury-
DPM numerically computes the forces and torques that
stem either from external body forces (such as a drag
force originating from the liquid), or from particle inter-
actions (such as contact forces). Although MercuryDPM
has been developed extensively for dry granular applica-
tions, it could also be adapted to include hydrodynamic
interactions such as lubrication forces resulting from the
thin layer of viscous fluid that separates nearly touching
particles, as it will be described in the following.

The contact between particles is modelled using the so
called Hertzian Spring Dashpot (HSD) model [23], where
the normal repulsion force between two spherical parti-
cles getting into contact is
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where Feg = E/2(1 —v?) is the effective Young modu-
lus with E being the Young modulus of the particle mate-
rial and v its Poisson ratio, r.g is the effective radius, and
0 refers to the overlap between particles: § = 0 for non-
touching particles, and § > 0 for overlapping particles.
Using such model, particles do not deform but overlap
keeping their spherical shape; thus, as the overlap § in-
creases, the repulsion force Fpert, increases to separate
the particles. Note also that for two particles 7 and j
in contact, 1/reg = 1/7; + 1/r; where r is the radius of
the particle. For a monodisperse suspension, it results
Tef = d/4 where d is the particle diameter.

Using the HSD model, the contact time during particle
collisions is given by
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where p is the particle density, and v, the typical colli-
sion velocity. In order to accurately resolve the contact,
a typical collision velocity between particles is set as a
fraction of the average flow velocity v, = 0.1v, which
yields small enough contact times to avoid any numer-
ical errors. We have checked that a different choice for
the collision velocity does not visibly affect the results,
as expected due to the weak dependency of the particle
collision contact time Tgert, With v.. The time step for
the simulations is then set as Tyert,/50.

As stated previously, as hydrodynamic interactions we
include the normal component of the lubrication force
Fl experienced by a particle i due to nearby particles j
using the expression
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where 7 is the fluid viscosity and u; the velocity of
particle ¢ [24]. If the distance between the position of
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FIG. 1. Schematic of the constricted channel of width 4D
used in the numerical simulations, with D = 100 pm the size
of the constriction as shown in the right figure. The constric-
tion angle was set at 60°. A suspension of particles with a
diameter d is forced through the constriction. A Poiseuille
like flow is imposed on the left of the channel and far from
the constriction.

the centers of particles ¢ and j is |xi] = |x; — x5,
then the separation distance of these particles is h;; =
|xij| —r; —r;j, and the normal unit vector pointing from
particle j to ¢ is thus i = x;;/|x;;|. Lubrication forces
are pair-wise short-ranged hydrodynamic interactions for
particles (¢, j) satisfying 2¢ < h;; < d/2 (for the monodis-
perse case), with £ the roughness of the particle. As ex-
pected, they are attractive for particles with diverging
trajectories and repulsive for converging ones. Given the
high particle packing fractions that we are considering
here, lubrication forces are the only relevant hydrody-
namic forces to consider and we can safely neglect the
role of longer ranged interactions.

Regarding the geometry of the numerical setup, the
suspension flows in a rectangular channel of thickness D
and width 4D, which reduces to a square cross section
of D x D to form the constriction, as depicted in Fig.
1. This is achieved by a linear narrowing of the channel
with a half angle of 60°. D was chosen equal to 100 pm
to match the experimental setup used in the experiments
[10-12]. The channel length upstream the constriction is
chosen to be 10D. No significant quantitative difference
was found in the results by extending the channel length
from 10D to 15D and 20D, so 10D was chosen for sake
of faster time computation.

The flow in the channel out of the constriction is im-
posed by a Poiseuille flow profile [25] with an average
flow velocity of ¥ = 5 mm/s, based on the typical par-
ticle velocities found in experiments [11, 12]. Close to
the constriction, the fluid flow is numerically computed
on a mesh using the software COMSOL. A closest mesh
neighbor interpolation then provides the flow velocity for
each particle position. Liquid flow rate is kept constant
in the presence of particles by imposing a fluid velocity
correction Vj/e, where V; is the computed fluid velocity
in the absence of particles and e accounts for the local
porosity of the particle suspension.

Furthermore, we assume that the particles are being
moved along the channel by a drag force. The natural
choice for spherical particles would be a Stokes-like drag
force, which in turn applies for individual particles in
the limit of very small packing fraction (when porosity e

FIG. 2. Successive snapshots of a burst in a suspension of
particles with a diameter d = 33 um that intermittently flows
through a constriction having a neck width and height of
D = 100 pm with D/d = 3.03. From top to bottom: arch
of particles formed around the neck in a clogged state, multi-
ple particles escape after breaking of the arch, a new arch is
formed at the constriction. Particles are color-coded accord-
ing to their velocity: immobile particles are shown in dark
blue, and fast-moving particles in dark red.

tends to one). For a packed suspension, the drag force is
corrected by a voidage function f(e) accounting for the
presence of surrounding particles. Thus, particles are
pushed by a corrected Stokes drag force of the form

F} = f(e)3mnd(v — w,), (4)

where v is the fluid velocity and u; is velocity of parti-
cle i. Following van der Hoef et al. [16], we use a voidage
function f(e) = 10(16;26) + €2 (1+2y/1—%¢), since it has
been proven to model the drag force over a large range
of porosities, in particular for dense suspensions.

To account for spatial variation of porosity within the
channel geometry, the porosity € is estimated by divid-
ing the channel into three parts and computing the so
called local stripped porosity: (1) at the beginning of the
channel, (2) in the middle of the channel and (3) close to
the constriction. Dividing the channel in a larger number
of sections, or computing a local porosity using a coarse
graining approach both ended in negligible variations of
the porosity once the suspension reaches its packed state.
Therefore, the former, simpler and faster method was
chosen.
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FIG. 3. Spatiotemporal diagrams at the constriction neck for various D/d. Grey : clog, no particle flowing through the
constriction neck; Black : particles flowing through the neck. Each black vertical line represents the time when a particle has
escaped the constriction. The width of every diagram line is given by the Stokes time of the particle, i.e., the time it takes a
particle to move a distance equal to its own diameter at an average velocity of & = 5 mm/s.

Flow and particle properties are chosen to match the
experiments: for the polystyrene particles we employ a
Young modulus and Poisson ratio of E = 3 GPa and
v = 0.35 respectively. Furthermore, a diameter depen-
dent particle roughness of £ = 0.005d and the macro-
scopic sliding, rolling and torsion friction coefficients were
assumed to be identical and equal to 0.6, which is in the
range of the typical sliding friction coefficient for fric-
tional particles [26-29]. In the experiments, liquid and
particle have a matching density of p = 1062 kg/m3
to avoid buoyancy effects, and the liquid viscosity is
n = 1.8 x 1073 Pa s, which is also included in the numeri-
cal model. More details about the experimental methods
can be found in Appendix A.

The simulations consist of a flowing suspension of
monodisperse particles of varying diameter d = 10, 22,
25, 28, 33, 40, 50, 70 and 80 pum. Adopting a neck
height of D = 100 pm this corresponds to neck-to-
particle ratios D/d = 10, 4.55, 4, 3.57, 3.03, 2.5, 2,
1.43 and 1.25 respectively. In the case of particles of
d =33 um (D/d=3.03), showing the characteristic inter-
mittency regime, the packing fraction typically reaches
values of approximately 0.5, with circa 1000 particles si-
multaneously simulated in the channel. On the other
end, for the largest particle case of d = 80 um, the aver-
age packing fraction was approximately 0.4, with around

60 particles simultaneously in the channel. Note that the
choice of neck-to-particle ratios is chosen to match exper-
imental data in the literature [10-12], but also involves
a range where the system is clearly three-dimensional
(D/d Z, 3) while another one is quasi-two-dimensional
(D/d < 3). The time step value is particle size depen-
dent as aforementioned, but always remains of the order
of 107% s. Simulations are run over typically one mil-
lion time steps and repeated tens of times with different
random seeds corresponding to various initial positions
of the injected particles. These are inserted at the left
boundary of the channel at a constant rate to keep the
maximum packing fraction attainable. Notice that when
the channel is full, we make sure to not overlap parti-
cles during insertion. The particles are erased once they
escape the constriction.

III. RESULTS

Figure 2 presents successive snapshots of a typical ex-
periment, for D/d = 3.03. In particular, the flow has be-
come interrupted by the spontaneous formation of arches
spanning the bottleneck (top panel in Fig. 2). At this
moment, particles are still experiencing a drag force, per-
turbing the arches which may eventually collapse. If this



happens, the flow of particles is resumed (middle panel)
and a burst of particles flowing through the constriction
develops until a new clog arrests the flow again (bottom
panel). The color coding shows in dark blue immobile
particles, in lighter blue slow and in red fast moving par-
ticles.

The overall intermittent behavior, in which several
flowing and arrested periods of time alternate, can be
better visualized in the spatio-temporal diagrams in Fig-
ure 3. There, in order to analyze the different regimes
of particle flow, we report the results obtained over the
range of neck-to-particle ratios 10 > D/d > 1.25. Spatio-
temporal diagrams are constructed to visually represent
the passage of successive particles through the neck con-
striction: a black vertical line represent a particle escap-
ing through the constriction, while grey regions are parti-
cle flow interruptions when no particle escapes, i.e., clogs.
The thickness of the vertical black lines width is given
by one Stokes time 7, the time a particle takes to travel
its own diameter length. Such a diagram is the numeri-
cal version of the spatio-temporal diagrams discussed by
Zuriguel et al. [30], and constructed experimentally in
Souzy et al. [11] and Zuriguel et al. [3]. The diagrams
clearly reveal a qualitative difference in the flow behav-
ior: from a clogged situation for larger particles (top di-
agram) to uninterrupted particle flow for the smallest
ones (bottom diagram). For D/d = 1.25 only few par-
ticles escape before the particle flow rate is interrupted
(in grey) and a permanent clog is formed which last un-
til the end of the simulation. For D/d = 1.43, following
few short intermittent bursts where particles escape in
small numbers (in black), a permanent clog is eventu-
ally formed. For D/d > 2 particles continuously keep on
escaping in bursts. As D/d is increased, the flowing in-
tervals become longer and more abundant. This regime
persists until the particle flow becomes continuous for
D/d > 10, so the bursts intermittency becomes immea-
surable. At this point, a minimum clog time T ,;, needs
to be defined in order to discern clogging from flowing:
a flow interruption longer than T}, separates the end of
a burst and the beginning of another. Note that given
the discrete nature of the system, defining an arrest time
threshold to set apart successive bursts is not straight-
forward. This is done by looking at the distribution of
times T" between the passage of two consecutive particles.
From those distributions, and using the Clauset-Shalizi-
Newman method [31], the characteristic minimum time
Tmin = 7/2 is obtained, which corresponds to the time
it takes for a particle to travel its own radius (more de-
tails in Appendix B). For D/d > 10, no time lapse T
between the passage of consecutive particles is reported
to be larger than Tin.

To quantify the intermittent dynamics in what follows,
we will analyse separately the arch formation and de-
struction processes by looking at the statistics of burst
sizes and arrest times, respectively. These two measur-
able quantities are proxies of these two crucial mecha-
nisms: the number of escapees per burst is an indicator
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FIG. 4. Distribution of the normalized number of particles
escaping per burst s/(s), which follow a similar exponential
distribution over the range of investigated D/d. Inset: the
average (s) plotted as a function of (D/d)*, with the error
bars standing for the standard deviation. The red line corre-
sponds to the best exponential fit, signature of the predicted
exponential trend expected by Thomas and Durian [32] for
a transition from a regime where clogs occur very frequently
(only few escapees before a new clog develops for D/d = 1.43)
to a regime of almost continuous particle flowing (thousands
of particles escape before a clog develops for D/d = 4.55).

of the probability of clogging, while the arrest time char-
acterizes the lifetime of a clog once it is formed, thus
being an indicator of the unclogging probability.

Arch formation. Similarly to pedestrians [33], animal
flocks [34] and avalanches [35], the number of entities es-
caping per burst has been experimentally found to follow
an exponential distribution in constricted flow of suspen-
sions [11, 12]. While monitoring the number of parti-
cles per burst is not an easy task experimentally given
that particles overlap frequently in this three dimensional
configuration, achieving such quantitative measurement
using numerical simulations is trivial as the position of
each single particle is monitored at each time. The corre-
sponding distribution P(s/(s)) of the number of escapees
per burst normalized by the average number of escapees,
which are shown on figure 4 for various D/d, are con-
sistent with the previous experimental measurements re-
ported in the literature. Such exponential distributions
of s/(s) reveal that the arch formation process is Pois-
sonian and consequently it can be described using sim-
ple stochastic models, considering that an arch develops
when a sufficient number of randomly arriving particles
reach the constriction in the appropriate arrangement
[10, 36]. Similarly, Thomas & Durian [32] proposed a
model for dry systems in which they showed that the
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FIG. 5. a) Distribution of the arrest time lapses T normalized by the Stokes time 7. The lines correspond to the best power-law
fits with their exponent «, as determined using the Clauset-Shalizi-Newman method [31]. b) « as a function of the neck-
to-particle size ratio D/d. The exponent can only be defined when the flow is intermittent and comparison with previous
experimental measurements in a similar configuration reveal quantitative value mismatch yet similar trend with increasing

D/d. The red line corresponds to an exponential fit « « e

discharged particle mass grows as an exponential func-
tion of hole diameter (to the power of the dimensionality
of the system), which is also in agreement with the re-
sults reported in the inset of figure 4, highlighting that
the average number of escapees per burst is well approxi-
mated using an exponential fit e(?)’. Both models are
actually compatible with the idea that new microstates
[32] in the vicinity of the constriction are continuously
and randomly sampled while particles arrive, until a sta-
ble arch is eventually found. A first consequence of such
clogging mechanism contemplated by both models is that
there is no sharp clogging transition for a given critical
outlet size in the sense that there is always a non-zero
probability for a clog to occur. A second consequence
is that the average number (s) of escaping particles per
burst is therefore a good proxy for the probability of clog-
ging: the higher (s), the smaller the probability of arch
formation.

A closer look at the distribution P(s/(s)) shows a
substantially higher probability for the smallest particle
bursts (typically bursts of 1 to 3 particles). Interestingly,
such feature has already been reported experimentally
in three-dimensional flow of constricted suspension [11]
and in three-dimensional silos [37] and shows that, rela-
tively often, a small number of particles may manage to
escape through the arch without destabilizing it. We in-
terpret this feature as a result from the system’s inherent
three-dimensionality, as such behavior is not reported for
two-dimensional configurations. It is rather remarkable
to notice that although using an unresolved method for
modelling the viscous drag, simulations are still able to

0.5D/d

capture such fine details which are experimentally ob-
served.

Arch destruction. To investigate the unclogging pro-
cess, we now analyse the probability distributions of time
lapses T between the passage of consecutive particles.
Such an approach has been extensively implemented in
previous studies on intermittently flowing systems, such
as pedestrian crowds [33, 38, 39], hungry sheep herds [34],
mice escaping a water pool [40], or vibrated silos of dry
granular material [41, 42]. Interestingly, in such systems
the distribution of arrested time lapses exhibits a power-
law tail P(T) oc T~%, a signature of systems susceptible
of clogging [3, 43]. Furthermore, the value of the expo-
nent o can be directly related to the long-term behaviour
of the system: the average time lapses (T) can only be de-
fined for distributions fulfilling o > 2, while (T") diverges
for a < 2. This feature has therefore been interpreted as
a transition to a scenario in which a permanent clog will
eventually develop. For o < 2, there is a non-zero proba-
bility of observing everlasting clogs, while for o > 2, the
system can be temporary blocked due to the formation
of clogs but no arch will persist infinitely. More detailed
discussions can be found in Zuriguel et al. [3], Zuriguel
and Garcimartin [43], or in Garcimartin et al. [44].

Figure 5a presents the probability distribution of the
arrest lapses obtained for various D/d from the spatio-
temporal diagrams shown in Figure 3. The distribu-
tion P(T/7) exhibits the characteristic power-law tail
P(T/7) < (T/7)~®. Note that we have been able to
measure time lapses up to two orders of magnitude larger
than the Stokes time, and that for each fixed value of



D/d > 2 more than ~ 1000 bursts have been anal-
ysed. For D/d = 1.43, as the flow is composed of few
bursts of escaping particles before a permanent clog de-
velops within a simulation, statistics are restricted to
~ 150 bursts. Finding the right parameters for power-
law tails can easily suffer from arbitrary biases, there-
fore the exponent o of the power-law tail is obtained
using the rigorous and widely accepted Clauset-Shalizi-
Newman method [31], which also yields the minimum
time lapse Thin from which the power-law fit is valid.
As mentioned earlier, note that for D/d = 10 no time-
lapse T' > Thin is reported, signature of the transition to
continuous particle flow for large neck-to-particle aspect
ratio.

Figure 5b presents the value of «, for various neck-
to-particle size ratios D/d. The error bars in the verti-
cal axis follow directly from the Clauset-Shalizi-Newman
method [31], and they represent the uncertainty in the
estimate fit to a power law. Note that for larger D/d,
the fit is performed over scarcer events as most of the
time lapses between the passage of consecutive particles
lay below T}, thus resulting in larger uncertainty in the
« value.

The first important thing to notice is that, as previ-
ously reported [11], the value of « is remarkably sensi-
tive and increases significantly to the neck-to-particle size
ratio. This is expected: the smaller the particles, the
higher the value of «, thus the higher is the probability
of short-lived clogs. This highlights the fact that arches
composed of more particles (large D/d) are less stable,
and thus more prone to break due to the perturbations
induced by the interstitial flow. In other words, shorter
arches are stronger than longer ones. Remarkably, over
the explored range of D/d for which an exponent « could
be estimated, values of o > 2 were found, thus indicat-
ing that the intermittent regimes would continue indefi-
nitely, with a zero probability of permanent clogs which
would persist endlessly. This is similar to other scenar-
ios where clogging transitions have been reported based
on the power-law tails of the arrest times, like vibrated
silos [41], Brownian particles [15], pedestrians [3], and
self-propelled robots [45]. All those systems reported
a fairly smooth transition from an intermittent clogged
state (o < 2) to a continuous flow, passing through a
region of intermittent flow with a > 2. Interestingly,
the values of a from the simulations are well fitted by
an exponential fit o o< €®-5P/¢ in the explored range of
D/d, highlighting again how crucial the neck-to-particle
size ratio parameter is both to the arch formation and
destruction processes.

The second thing to notice is that there is a signifi-
cant quantitative mismatch between the values of « re-
ported for the numerical simulations with those reported
for the experiments of Souzy et al. [11]. In this respect,
note that Souzy and Marin [12] reported that the value
of « is independent of the imposed flow rate in volume
controlled configuration. Therefore, when comparing the
results of the simulations to the experimental results ob-

tained under constant flow rate configuration, the quan-
titative mismatch cannot be attributed to a mismatch
between the flow rate imposed within the experiments
and the numerical simulations. The higher values of « in
the numerical results imply a higher probability of arch
destruction, thus a lower arch stability when compared to
experiments. We could speculate about different reasons
for such mismatch. One reason could be attributed to
the porosity estimation e, or to the voidage function f(e),
which may overestimate the Stokes drag force, thus lead-
ing to an enhancement of the arch destabilization mecha-
nism. Another hypothesis could be found in the presence
of “fast channels” [46] within the dynamic porous net-
work in experiments, which cannot be reproduced in the
current simulations due to the lack of coupling between
the fluid flow and the particle network.

Another cause for this discrepancy may also lie on how
the friction coefficient is accounted for in the simulations.
Three distinct friction coefficients can be set: sliding,
rolling and torsion. As aforementioned these parameters
were all set to an identical value of 0.6. However, one
could discard such assumption and argue that one of the
specific friction coefficient should be tuned to a greater
value than the others. Increasing the value of the rolling
coefficient friction for instance, should make it harder for
particles to roll on each other and stabilize arches.

IV. CONCLUSION

Performing numerical simulations of the intermittent
flow of particulate suspensions through a constriction us-
ing an advanced discrete particle solver and an approx-
imate numerical model for the liquid drag, our simu-
lations yield qualitatively good results when compared
to experimental investigations. An intermittent flow
of successive bursts of released particles is reported for
1.43 < D/d < 4.55. For D/d > 4.55, the flow of particle
is found to be continuous with no discernible particle flow
interruption. Surprisingly, the intermittent flow regime
is also reported down to D/d = 1.43, signature that the
particle flow is enhanced in the simulations compared to
the experiments. Consistent with the currently accepted
understanding of the arch formation process [32, 36], the
average number of escapees per burst follows a Poisson
distribution with the neck-to-particle size ratio, i.e., (s)
follows an exponential increase with (D/d)?. However,
the quantitative values of (s) lie below what is experimen-
tally reported [12], suggesting that the arch construction
process is somehow more likely in the simulations. Yet,
subtle features such as a higher probability for the small-
est particle bursts (already reported in three-dimensional
flow of constricted suspensions [11] but also in granular
silos [37]) are remarkably captured within the simula-
tion, highlighting the striking phenomenological agree-
ment. Regarding the arch destruction processes, we re-
port larger values of the exponent « from the simula-
tions compared to the experiments, a direct signature of



shorter-living arches. Consequently, both the arch con-
struction and the arch destruction are enhanced in silico
when compared to the experiments.

Understanding the fundamental reasons for such puz-
zling discrepancies is yet to be investigated and require
additional study. The current results reveal that resolv-
ing the fluid flow is not necessary to mimic the rich phe-
nomenology of particulate suspensions flowing through a
constriction, offering a promising cost-efficient numerical
method to study the phenomenology of such a complex
problem. A tool like this could be particularly useful to
investigate the effect of various parameters which are ex-
perimentally very challenging to explore on the overall
flow behaviour, such as the effect of particle roughness,
the constriction angle, the particle softness, decipher-
ing the respective importance of hydrodynamic forces,
or extensively exploring the intermittent flow transition
by varying the neck-to-particle size ratio. However, our
results indicate that resolving the interparticle flow with
a numerical CFD solver may be necessary when a direct
comparison with experiments is required.
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Appendix A: Experimental methods

The experimental results used as a benchmark for the
numerical results are extracted from Souzy et al. [11]
and Souzy and Marin [12]. The experimental set-up,
also used in Marin et al. [10], consists of a single trans-
parent straight channel of borosilicate glass (isotropic
wet etching, Micronit microfluidics) with a rectangular
cross-section of 100 x 400 pm? which reduces to an al-
most square cross-section of 100 x 110 pum? to form the
neck. A linear narrowing of the channel with a half-
angle of 60°achieves the constriction, such that the flu-
idic system forms a two-dimensional nozzle converging
towards the neck. Particles and liquid have been cho-
sen to avoid buoyancy effects, particle aggregation and
particle deposition at the micro-channel walls: the sus-
pension consists of monodisperse spherical polystyrene
particles (Microparticles GmbH) of diameter d which is
varied from 19.0 to 41.1 pm(+3%). Particles are stabi-
lized with negatively charged sulfate groups in a density-
matched 26.3 wt% aqueous solution of glycerine, with a
density p = 1062 kg/m? [47]. The charged sulfate groups
confer them a small negative surface potential (on the
order of —50 mV) but sufficient to prevent both their

agglomeration and their adhesion to the channel walls.
The suspension is prepared with a particle volume frac-
tion of about 2%, then inserted in the device and driven
downstream the constriction towards a filter which only
allows the fluid to flow through. Particles are therefore
initially concentrated in that position.

An experiment starts when the flow is reversed and
particles are dragged by the fluid towards the constric-
tion. Note that although the experimental system is
designed to flow either in pressure or volume-controlled
driving, the comparisons were done with experimental re-
sults obtained in an imposed volume-rate configuration.
Particles flow towards the constriction forming a com-
pact and long “column” of particles, and the suspension
is imaged with a high-speed CMOS camera (PCO.dimax
CS1) coupled to an inverted microscope (Nikon Instru-
ments, Eclipse TE2000-U).

Note that the reason for using such particle size range
(between 10 and 50 pm) is dual: on the one hand, we
avoid colloidal particle interactions and Brownian mo-
tion. On the other hand, increasing the particle size fur-
ther would also involve handling larger volumes of fluid,
i.e., larger Reynolds number Re and higher working pres-
sures. Therefore, the range of particle size chosen allows
to work with highly monodisperse particles interacting
mainly by hydrodynamic interactions and low-pressure
solid contacts, manipulated via microfluidic technology,
which allows to obtain a high degree of control and re-
producibility difficult to achieve experimentally at other
length scales. Each experiment was typically repeated
~ 30 — 50 times, where each recorded run typically mon-
itors tens of clog formation/destruction events.

Appendix B: Minimum arrest time

Given the discrete nature of the system, defining an
arrest/clog time threshold to set apart successive bursts
is not straightforward. This is done by looking at the dis-
tributions P(T") of times between the passage of two con-
secutive particles, which exhibit power-law tails. Find-
ing the right parametric fit for power-law tails can easily
suffer from arbitrary biases when trying to characterize
experimental data sets. To tackle such issue, the expo-
nents « of the power-law tails are obtained using the
rigorous and widely accepted Clauset-Shalizi-Newman
method [31]. This method also yields the estimated er-
ror of the fit, which is used to set the error bars on Fig
5b. The method can also either be used leaving the mini-
mum time lapse Ti,i, from which the power-law fit is per-
formed as a free parameter which will be determined by
the method, either get the value of Ty, directly provided
as an input. When using the Clauset-Shalizi-Newman
method over the data leaving Ty, as a free parameter,
we find that T, ~ 0.57 & 0.17 over a wide range of
2 < D/d < 4.55. A value of Ty, = 0.57, which cor-
responds to the time it takes for a particle to travel its
own radius, was therefore subsequently used as an input



for the Clauset-Shalizi-method to determine the values
of . More importantly, this value was used to define the
minimum time lapse to set apart consecutive bursts: a

clog event is defined as any event where the time lapse T'
between the passage of two consecutive particles is such
that T > Tiin.
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